\(\int \frac {(d+c^2 d x^2)^{3/2} (a+b \text {arcsinh}(c x))^n}{x} \, dx\) [520]

   Optimal result
   Rubi [N/A]
   Mathematica [N/A]
   Maple [N/A] (verified)
   Fricas [N/A]
   Sympy [N/A]
   Maxima [N/A]
   Giac [F(-2)]
   Mupad [N/A]

Optimal result

Integrand size = 28, antiderivative size = 28 \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^n}{x} \, dx=\frac {3^{-1-n} d^2 e^{-\frac {3 a}{b}} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (-\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{8 \sqrt {d+c^2 d x^2}}+\frac {5 d^2 e^{-\frac {a}{b}} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (-\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 \sqrt {d+c^2 d x^2}}+\frac {5 d^2 e^{a/b} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 \sqrt {d+c^2 d x^2}}+\frac {3^{-1-n} d^2 e^{\frac {3 a}{b}} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{8 \sqrt {d+c^2 d x^2}}+d^2 \text {Int}\left (\frac {(a+b \text {arcsinh}(c x))^n}{x \sqrt {d+c^2 d x^2}},x\right ) \]

[Out]

1/8*3^(-1-n)*d^2*(a+b*arcsinh(c*x))^n*GAMMA(1+n,-3*(a+b*arcsinh(c*x))/b)*(c^2*x^2+1)^(1/2)/exp(3*a/b)/(((-a-b*
arcsinh(c*x))/b)^n)/(c^2*d*x^2+d)^(1/2)+5/8*d^2*(a+b*arcsinh(c*x))^n*GAMMA(1+n,(-a-b*arcsinh(c*x))/b)*(c^2*x^2
+1)^(1/2)/exp(a/b)/(((-a-b*arcsinh(c*x))/b)^n)/(c^2*d*x^2+d)^(1/2)+5/8*d^2*exp(a/b)*(a+b*arcsinh(c*x))^n*GAMMA
(1+n,(a+b*arcsinh(c*x))/b)*(c^2*x^2+1)^(1/2)/(((a+b*arcsinh(c*x))/b)^n)/(c^2*d*x^2+d)^(1/2)+1/8*3^(-1-n)*d^2*e
xp(3*a/b)*(a+b*arcsinh(c*x))^n*GAMMA(1+n,3*(a+b*arcsinh(c*x))/b)*(c^2*x^2+1)^(1/2)/(((a+b*arcsinh(c*x))/b)^n)/
(c^2*d*x^2+d)^(1/2)+d^2*Unintegrable((a+b*arcsinh(c*x))^n/x/(c^2*d*x^2+d)^(1/2),x)

Rubi [N/A]

Not integrable

Time = 0.72 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00, number of steps used = 0, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^n}{x} \, dx=\int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^n}{x} \, dx \]

[In]

Int[((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x])^n)/x,x]

[Out]

(3^(-1 - n)*d^2*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^n*Gamma[1 + n, (-3*(a + b*ArcSinh[c*x]))/b])/(8*E^((3*a
)/b)*Sqrt[d + c^2*d*x^2]*(-((a + b*ArcSinh[c*x])/b))^n) + (5*d^2*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^n*Gamm
a[1 + n, -((a + b*ArcSinh[c*x])/b)])/(8*E^(a/b)*Sqrt[d + c^2*d*x^2]*(-((a + b*ArcSinh[c*x])/b))^n) + (5*d^2*E^
(a/b)*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^n*Gamma[1 + n, (a + b*ArcSinh[c*x])/b])/(8*Sqrt[d + c^2*d*x^2]*((
a + b*ArcSinh[c*x])/b)^n) + (3^(-1 - n)*d^2*E^((3*a)/b)*Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^n*Gamma[1 + n,
(3*(a + b*ArcSinh[c*x]))/b])/(8*Sqrt[d + c^2*d*x^2]*((a + b*ArcSinh[c*x])/b)^n) + d^2*Defer[Int][(a + b*ArcSin
h[c*x])^n/(x*Sqrt[d + c^2*d*x^2]), x]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {d^2 (a+b \text {arcsinh}(c x))^n}{x \sqrt {d+c^2 d x^2}}+\frac {2 c^2 d^2 x (a+b \text {arcsinh}(c x))^n}{\sqrt {d+c^2 d x^2}}+\frac {c^4 d^2 x^3 (a+b \text {arcsinh}(c x))^n}{\sqrt {d+c^2 d x^2}}\right ) \, dx \\ & = d^2 \int \frac {(a+b \text {arcsinh}(c x))^n}{x \sqrt {d+c^2 d x^2}} \, dx+\left (2 c^2 d^2\right ) \int \frac {x (a+b \text {arcsinh}(c x))^n}{\sqrt {d+c^2 d x^2}} \, dx+\left (c^4 d^2\right ) \int \frac {x^3 (a+b \text {arcsinh}(c x))^n}{\sqrt {d+c^2 d x^2}} \, dx \\ & = d^2 \int \frac {(a+b \text {arcsinh}(c x))^n}{x \sqrt {d+c^2 d x^2}} \, dx-\frac {\left (d^2 \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int x^n \sinh ^3\left (\frac {a}{b}-\frac {x}{b}\right ) \, dx,x,a+b \text {arcsinh}(c x)\right )}{b \sqrt {d+c^2 d x^2}}-\frac {\left (2 d^2 \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int x^n \sinh \left (\frac {a}{b}-\frac {x}{b}\right ) \, dx,x,a+b \text {arcsinh}(c x)\right )}{b \sqrt {d+c^2 d x^2}} \\ & = d^2 \int \frac {(a+b \text {arcsinh}(c x))^n}{x \sqrt {d+c^2 d x^2}} \, dx-\frac {\left (i d^2 \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int \left (-\frac {1}{4} i x^n \sinh \left (\frac {3 a}{b}-\frac {3 x}{b}\right )+\frac {3}{4} i x^n \sinh \left (\frac {a}{b}-\frac {x}{b}\right )\right ) \, dx,x,a+b \text {arcsinh}(c x)\right )}{b \sqrt {d+c^2 d x^2}}-\frac {\left (d^2 \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int e^{-i \left (\frac {i a}{b}-\frac {i x}{b}\right )} x^n \, dx,x,a+b \text {arcsinh}(c x)\right )}{b \sqrt {d+c^2 d x^2}}+\frac {\left (d^2 \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int e^{i \left (\frac {i a}{b}-\frac {i x}{b}\right )} x^n \, dx,x,a+b \text {arcsinh}(c x)\right )}{b \sqrt {d+c^2 d x^2}} \\ & = \frac {d^2 e^{-\frac {a}{b}} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (-\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {a+b \text {arcsinh}(c x)}{b}\right )}{\sqrt {d+c^2 d x^2}}+\frac {d^2 e^{a/b} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {a+b \text {arcsinh}(c x)}{b}\right )}{\sqrt {d+c^2 d x^2}}+d^2 \int \frac {(a+b \text {arcsinh}(c x))^n}{x \sqrt {d+c^2 d x^2}} \, dx-\frac {\left (d^2 \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int x^n \sinh \left (\frac {3 a}{b}-\frac {3 x}{b}\right ) \, dx,x,a+b \text {arcsinh}(c x)\right )}{4 b \sqrt {d+c^2 d x^2}}+\frac {\left (3 d^2 \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int x^n \sinh \left (\frac {a}{b}-\frac {x}{b}\right ) \, dx,x,a+b \text {arcsinh}(c x)\right )}{4 b \sqrt {d+c^2 d x^2}} \\ & = \frac {d^2 e^{-\frac {a}{b}} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (-\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {a+b \text {arcsinh}(c x)}{b}\right )}{\sqrt {d+c^2 d x^2}}+\frac {d^2 e^{a/b} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {a+b \text {arcsinh}(c x)}{b}\right )}{\sqrt {d+c^2 d x^2}}+d^2 \int \frac {(a+b \text {arcsinh}(c x))^n}{x \sqrt {d+c^2 d x^2}} \, dx-\frac {\left (d^2 \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int e^{-i \left (\frac {3 i a}{b}-\frac {3 i x}{b}\right )} x^n \, dx,x,a+b \text {arcsinh}(c x)\right )}{8 b \sqrt {d+c^2 d x^2}}+\frac {\left (d^2 \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int e^{i \left (\frac {3 i a}{b}-\frac {3 i x}{b}\right )} x^n \, dx,x,a+b \text {arcsinh}(c x)\right )}{8 b \sqrt {d+c^2 d x^2}}+\frac {\left (3 d^2 \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int e^{-i \left (\frac {i a}{b}-\frac {i x}{b}\right )} x^n \, dx,x,a+b \text {arcsinh}(c x)\right )}{8 b \sqrt {d+c^2 d x^2}}-\frac {\left (3 d^2 \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int e^{i \left (\frac {i a}{b}-\frac {i x}{b}\right )} x^n \, dx,x,a+b \text {arcsinh}(c x)\right )}{8 b \sqrt {d+c^2 d x^2}} \\ & = \frac {3^{-1-n} d^2 e^{-\frac {3 a}{b}} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (-\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{8 \sqrt {d+c^2 d x^2}}+\frac {5 d^2 e^{-\frac {a}{b}} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (-\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 \sqrt {d+c^2 d x^2}}+\frac {5 d^2 e^{a/b} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {a+b \text {arcsinh}(c x)}{b}\right )}{8 \sqrt {d+c^2 d x^2}}+\frac {3^{-1-n} d^2 e^{\frac {3 a}{b}} \sqrt {1+c^2 x^2} (a+b \text {arcsinh}(c x))^n \left (\frac {a+b \text {arcsinh}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {3 (a+b \text {arcsinh}(c x))}{b}\right )}{8 \sqrt {d+c^2 d x^2}}+d^2 \int \frac {(a+b \text {arcsinh}(c x))^n}{x \sqrt {d+c^2 d x^2}} \, dx \\ \end{align*}

Mathematica [N/A]

Not integrable

Time = 0.36 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.07 \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^n}{x} \, dx=\int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^n}{x} \, dx \]

[In]

Integrate[((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x])^n)/x,x]

[Out]

Integrate[((d + c^2*d*x^2)^(3/2)*(a + b*ArcSinh[c*x])^n)/x, x]

Maple [N/A] (verified)

Not integrable

Time = 0.21 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.93

\[\int \frac {\left (c^{2} d \,x^{2}+d \right )^{\frac {3}{2}} \left (a +b \,\operatorname {arcsinh}\left (c x \right )\right )^{n}}{x}d x\]

[In]

int((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))^n/x,x)

[Out]

int((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))^n/x,x)

Fricas [N/A]

Not integrable

Time = 0.29 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00 \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^n}{x} \, dx=\int { \frac {{\left (c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{n}}{x} \,d x } \]

[In]

integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))^n/x,x, algorithm="fricas")

[Out]

integral((c^2*d*x^2 + d)^(3/2)*(b*arcsinh(c*x) + a)^n/x, x)

Sympy [N/A]

Not integrable

Time = 125.89 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.93 \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^n}{x} \, dx=\int \frac {\left (d \left (c^{2} x^{2} + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asinh}{\left (c x \right )}\right )^{n}}{x}\, dx \]

[In]

integrate((c**2*d*x**2+d)**(3/2)*(a+b*asinh(c*x))**n/x,x)

[Out]

Integral((d*(c**2*x**2 + 1))**(3/2)*(a + b*asinh(c*x))**n/x, x)

Maxima [N/A]

Not integrable

Time = 0.41 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00 \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^n}{x} \, dx=\int { \frac {{\left (c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{n}}{x} \,d x } \]

[In]

integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))^n/x,x, algorithm="maxima")

[Out]

integrate((c^2*d*x^2 + d)^(3/2)*(b*arcsinh(c*x) + a)^n/x, x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^n}{x} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((c^2*d*x^2+d)^(3/2)*(a+b*arcsinh(c*x))^n/x,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [N/A]

Not integrable

Time = 2.56 (sec) , antiderivative size = 28, normalized size of antiderivative = 1.00 \[ \int \frac {\left (d+c^2 d x^2\right )^{3/2} (a+b \text {arcsinh}(c x))^n}{x} \, dx=\int \frac {{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^n\,{\left (d\,c^2\,x^2+d\right )}^{3/2}}{x} \,d x \]

[In]

int(((a + b*asinh(c*x))^n*(d + c^2*d*x^2)^(3/2))/x,x)

[Out]

int(((a + b*asinh(c*x))^n*(d + c^2*d*x^2)^(3/2))/x, x)